

The Shape of Edge Differential Privacy

Random Dot-Product Graphs

RDPGs encompass a large class of commonly used models

(Definition) Given
$$\mathbb{P}$$
 on \mathbb{R}^d and $p + q = d$ such that:
• For $\mathbb{I}_{p,q} = \text{Diag}(\mathbf{1}_p^{\top}, -\mathbf{1}_q^{\top})$, and
• For all $\mathbf{X}, \mathbf{Y} \sim \mathbb{P}$ such that $\mathbf{X} \perp \mathbf{Y}$
 $\langle \mathbf{X}, \mathbb{I}_{p,q} \mathbf{Y} \rangle_2 \in [0, 1]$ a.s.

Then $G \sim \mathsf{RDPG}(\mathbb{P})$ if, for all $\{X_1, X_2 \dots X_n\} \sim \mathbb{P}$, edge $(X_i, X_j) | X_1 \dots X_n \sim \mathsf{Bernoulli} (\langle X_i, \mathbb{I}_{p,q} X_j \rangle_2)$

Spectral embeddings of RDPGs recover topological information

Theoretical Results

For $\epsilon > 0$ and $G \sim \mathsf{RDPG}(\mathbb{P})$, where $\mathsf{supp}(\mathbb{P}) = \mathcal{M} \subset \mathbb{R}^d$

(i) $\mathcal{A}_{\epsilon}(G) \sim \mathsf{RDPG}(\mathbb{P}_{\epsilon})$ with $\mathsf{supp}(\mathbb{P}_{\epsilon}) = \mathcal{M}_{\epsilon} \subset \mathbb{R}^{d+1}$ s.t. $\mathcal{M}_{\epsilon} = \xi(\mathcal{M})$ and $\mathbb{P}_{\epsilon} = \xi_{\sharp}\mathbb{P}$ is the pushforward of \mathbb{P} via $\xi: \boldsymbol{x} \mapsto \left(\sqrt{1-2\pi(\epsilon)}\right) \boldsymbol{x} \oplus \sqrt{\pi(\epsilon)}$

(ii) \mathcal{M}_{ϵ} is diffeomorphic to \mathcal{M} , and diam $\mathcal{M}_{\epsilon} \downarrow$ as $\epsilon \downarrow$.

(iii) When
$$\epsilon = 0$$
, $\mathcal{M}_{\epsilon} = \{x_0\}$ with $||x_0|| = \frac{1}{2}$ and $x_0 \perp \mathcal{M}$
RDPG $(\delta_{x_0}) \sim \text{Erdős-Rényi}(\frac{1}{2})$

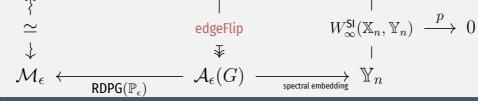
(iv)* When $\mathbb{X}_n = \Phi(G)$ and $\mathbb{Y}_n = \Phi(\mathcal{A}_{\epsilon}(G))$ denote the spectral embeddings of G and $\mathcal{A}_{\epsilon}(G)$, then as $n \rightarrow \infty$ $W^{\mathsf{SI}}_{\infty}(\mathbb{X}_n, \mathbb{Y}_n) \xrightarrow{p} 0$

Siddharth Vishwanath and Jonathan Hehir

The Pennsylvania State University

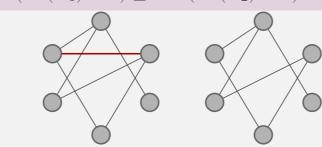
TL; DR

Given a graph $G \sim \mathcal{G}$, the ϵ -edge DP graph $\mathcal{A}_{\epsilon}(G)$ preserves topological structure for a large class of random graphs G. $\mathsf{RDPG}(\mathbb{P})$ $\rightarrow G \xrightarrow{\text{spectral embedding}} \mathbb{X}_n$ \mathcal{M}



(1B) Differential Privacy via edgeFlip

Let $\mathcal{G}^n = \{(V, E) : |V| = n\} =$ Class of graphs with n vertices **(Definition)** $\mathcal{M} : \mathcal{G}^n \to \mathcal{G}^n$ satisfies ϵ -edge DP if for all graphs $G_1 \stackrel{e}{\sim} G_2$ differing in a single edge, i.e. $E_1 \Delta E_2 = \{e\}$ $\mathbb{P}\left(\mathscr{M}(G_1) \in S\right) \le e^{\epsilon} \mathbb{P}\left(\mathscr{M}(G_2) \in S\right) \ \forall S \subseteq \mathcal{G}^n$

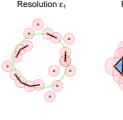


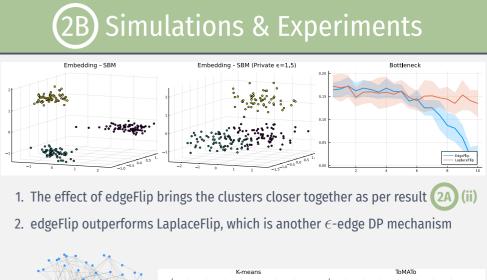
(edgeFlip) For graph $G, \epsilon > 0$ and $\pi(\epsilon) := (1 + e^{\epsilon})^{-1} \in (0, 1)$, edgeFlip is the mechanism $\mathcal{A}_{\epsilon}(G) : \mathcal{G}^n \to \mathcal{G}^n$ such that

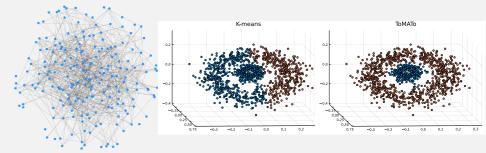
$$\mathcal{A}_{\epsilon}\left(\mathbf{e}(i,j)\right) \left| \mathbf{e}(i,j) = \begin{cases} \mathbf{e}(i,j) & \text{w.p. } 1 - \pi(\epsilon) \\ 1 - \mathbf{e}(i,j) & \text{w.p. } \pi(\epsilon) \end{cases}$$

- [1] F. Chazal and B. Michel. An introduction to topological data analysis. arXiv:1710.04019, 2017
- [2] V. Karwa, et al. Sharing social network data. Journal of the Royal Statistical Society, 2017
- [3] A. Athreya, et al. Statistical inference on random dot product graphs. Journal of Machine Learning Research, 2017
- [4] V. Solanki, et al. Persistent homology of graph embeddings. arXiv:1912.10238, 2019

Topological Data Analysis has emerged as a propitious tool for uncovering low-dimensional structures underlying data



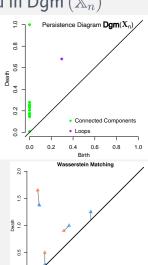




3. Topology aware spectral clustering algorithms, which are more appropriate for the data and the privacy mechanism, lead to noticeably better results

(1C) Measuring Shape using Topology

(Persistence Diagram) Given $X_n = \{X_1, \ldots, X_n\}$, the multiscale evolution of topological features is summarized in Dqm (\mathbb{X}_n)



• Dqm (\mathbb{X}_n) lives in a metric space (\mathfrak{D}, W_∞) • $W_{\infty}(\cdot, \cdot)$ is the Wasserstein metric for matchings • The "shape distortion" between points X_n and Y_n can be quantified by $W_{\infty}(\mathsf{Dgm}(\mathbb{X}_n), \mathsf{Dgm}(\mathbb{Y}_n))$ • However, W_{∞} is sensitive to the "units" of the underlying metric, e.g., distances in inches vs. cm

This can be overcome by considering the shift-invariant distance– $W_{\infty}^{SI}(\cdot, \cdot)$

 $W^{\mathsf{SI}}_{\infty}(D_1, D_2) = \inf_{\alpha \in \mathbb{D}} W_{\infty}(D_1 \oplus s, D_2)$