
The Shape of Edge Differential PrivacyThe Shape of Edge Differential Privacy
Siddharth VishwanathSiddharth Vishwanath andand Jonathan HehirJonathan Hehir

The Pennsylvania State UniversityThe Pennsylvania State University

TL; DR

Given a graph G ∼ G, the ε-edge DP graph Aε(G) preserves
topological structure for a large class of random graphs G.
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1A Random Dot-Product Graphs
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(Definition) Given P on Rd and p+ q = d such that:

• For Ip,q = Diag
(
1>
p ,−1>

q

)
, and

• For allX,Y ∼ P such thatX⊥ Y〈
X, Ip,qY

〉
2
∈ [0, 1] a.s.

Then G ∼ RDPG(P) if, for all{X1,X2 . . .Xn} ∼ P,

edge(Xi,Xj)
∣∣∣X1 . . .Xn ∼ Bernoulli

(〈
Xi, Ip,qXj

〉
2

)
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Spectral embeddings of RDPGs recover topological information
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1B Differential Privacy via edgeFlip

Let Gn = {(V,E) : |V | = n} = Class of graphs with n vertices

(Definition) M : Gn → Gn satisfies ε–edge DP if for all

graphs G1
e∼G2 differing in a single edge, i.e. E1∆E2={e}

P (M (G1) ∈ S) ≤ eε P (M (G2) ∈ S) ∀S ⊆ Gn

(edgeFlip) For graph G, ε>0 and π(ε) := (1 + eε)−1 ∈ (0, 1),
edgeFlip is the mechanism Aε(G) : Gn → Gn such that

Aε (e(i, j))
∣∣e(i, j) = {

e(i, j) w.p. 1− π(ε)

1− e(i, j) w.p. π(ε)

1C Measuring Shape using Topology
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(PersistenceDiagram) Given Xn={X1, . . . ,Xn}, the multiscale
evolution of topological features is summarized in Dgm (Xn)
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• Dgm (Xn) lives in a metric space (D,W∞)

• W∞(·, ·) is the Wasserstein metric for matchings

• The “shape distortion” between points Xn and Yn

can be quantified byW∞(Dgm (Xn) ,Dgm (Yn))

• However, W∞ is sensitive to the “units” of the

underlyingmetric, e.g., distances in inches vs. cm

This can be overcome by considering the shift-invariant distance–W SI
∞ (·, ·)

W SI
∞(D1, D2) = inf

s∈R
W∞(D1 ⊕ s,D2)

2A Theoretical Results

For ε > 0 and G∼ RDPG(P), where supp(P) = M ⊂ Rd

(i) Aε(G) ∼ RDPG(Pε) with supp(Pε)=Mε⊂Rd+1 s.t.

Mε = ξ(M) and Pε = ξ]P is the pushforward of P via

ξ : x 7→
(√

1− 2π(ε)
)
x ⊕

√
π(ε)

(ii) Mε is diffeomorphic toM, and diamMε ↓ as ε ↓.

(iii) When ε = 0, Mε = {x0} with ‖x0‖ = 1
2 and x0 ⊥ M

RDPG (δx0
) ∼ Erdős-Rényi

(
1
2

)
(iv)∗ When Xn = Φ(G) and Yn = Φ(Aε(G)) denote the

spectral embeddings of G and Aε(G), then as n→∞

W SI
∞(Xn,Yn)

p−→ 0

* Under some mild regularity assumptions

2B Simulations & Experiments

1. The effect of edgeFlip brings the clusters closer together as per result 2A (ii)

2. edgeFlip outperforms LaplaceFlip, which is another ε-edge DP mechanism

3. Topology aware spectral clustering algorithms, which are more appropriate for

the data and the privacy mechanism, lead to noticeably better results
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